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Abstract

The two-dimensional steady and time-dependent fluid flow and heat transfer through periodic, wavy channels is numerically
studied, for a fluid with a Prandtl number of 0.7, by means of an unstructured covolume method. The two geometrical configu-
rations considered, a sinusoidal channel and an arc-shaped channel, are shown to provide little or no heat transfer augmentation, in
comparison to a parallel-plate channel, in steady flow regimes at lower values of the Reynolds number. In addition, they both have
higher pressure drop than that of the parallel-plate channel under fully developed flow conditions. For the unsteady regime, reached
at about Re =175-200 for the sinusoidal channel, and Re =60-80 for the arc-shaped channel, both geometries exhibit a significant
increase in the heat transfer rate, up to three times for the highest Reynolds number investigated. This increase is higher for the arc-
shaped flow passage, but is accompanied by a higher friction factor than that of the sinusoidal channel. © 2001 Elsevier Science

Inc. All rights reserved.
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1. Introduction

There are several methods used to increase the heat transfer
rate in compact heat exchangers (Kakag¢ et al., 1980). The
majority of these methods share a common objective, i.e., to
interrupt the boundary layer on the solid surface, and replace
it with fluid from the core, thus creating a new boundary layer
with an increased temperature gradient. Relevant examples of
this technique are offset-fins, vortex generators, louvers, etc. It
is desirable to employ the method that gives the minimum
pressure drop, and the highest heat transfer rate, though in
practice the ease of manufacturability and maintenance has
also to be taken into account.

A simple geometry of the flow passage that is relatively easy
to produce and can be used to augment the heat transfer rate, is
the wavy, periodic channel. Wavy or corrugated channels, as
observed experimentally and numerically (Nishimura et al.,
1984, 1990; Wang and Vanka, 1995), usually do not provide
any significant heat transfer enhancement if operated in steady
regime. However, if a transition to an unsteady regime occurs,
a relevant increase of the heat transfer rate is observed. This
transition to a time-dependent regime might be natural or
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caused by an external forcing, i.e., oscillatory inflow, acoustic
excitation, etc. From the practical point of view, it is the
natural transition that is more interesting. The critical Rey-
nolds number, at which bifurcation to time-dependent flow is
attained, depends heavily on the geometry of the channel. It is
in this unsteady regime that such geometries can be quite ef-
fective.

In this work we describe our approach for the numerical
study of heat transfer enhancement in periodic corrugated
channels. The long-term objective of this research is the design
and optimization of heat transfer surfaces, particularly suited
for compact heat exchangers, but of general interest for other
applications as well. A numerical method used for these cal-
culations must be able to cope with complex geometries, must
be able to capture, in an accurate way, the onset of unsteadi-
ness, and finally it should have the capability to portray the
evolving velocity and temperature fields in unsteady regimes.

The numerical method employed in this study is based on a
time-accurate, control volume (CV) approach. More specifi-
cally, the spatial discretization is performed with the so-called
covolume method, first introduced by Nicolaides (1989, 1992).
The main feature of the method is the use of two families of
CVs which are mutually orthogonal, and called complemen-
tary volumes or covolumes for short. The computational do-
main is subdivided into a finite number of non-overlapping
polygons (CVs) for which a circumcircle can be defined. This
family of CVs is called the primal grid. The other family of CVs
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Notation
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hydraulic diameter (2H,,)

friction factor (Eq. (42))

source term in momentum equation

length of the Delaunay triangle side

average heat transfer coefficient

height of the channel

unit normal vector in the x (streamwise)-direction
thermal conductivity

length of the Voronoi polygon side

length of the repeating module

log-mean temperature difference (Eq. (41))

unit normal vector for the triangle side

number of cells

average Nusselt number (Eq. (38))

periodic part of kinematic pressure

kinematic pressure (pressure divided by
density)

Prandtl number (v/o)

heat flux

Reynolds number (Eq. (43))

unit tangent vector for the triangle side
temperature

bulk temperature (Eq. (34))

velocity vector

velocity component normal to the triangle side
velocity component tangential to the triangle side
position vector

horizontal (streamwise) component of the posi-
tion vector
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y vertical (normalwise) component of the position
vector

Greeks

o thermal diffusivity

p overall pressure gradient (Eq. (29))

r boundary of cell domain

@ scalar potential (pseudo-pressure)

v kinematic viscosity

o density

0 normalized temperature (Eq. (33))

T time

w scalar vorticity

0] vorticity

Q cell domain

Subscripts

av quantity evaluated at average cross-section
%(Hmax + Hmin)

i summation over the Delaunay triangle sides

in quantity at inlet

j summation over the Voronoi polygon sides

max quantity evaluated at maximum cross-section

min quantity evaluated at minimum cross-section

out quantity at outlet

w quantity at the wall

Superscripts

m iteration counter

n time level

! primal (Delaunay) grid
dual (Voronoi) grid

"

(dual grid) is obtained by connecting the circumcenters of the
primal grid polygons. There are several choices for defining
covolumes, the two most widely used being: a pair of two
rectangular orthogonal grids or Delaunay triangles as the
primal grid and Voronoi polygons as the dual grid. Since
complex shapes of passages are of interest, we take advantage
of the geometric flexibility offered by unstructured Delaunay
grid and use it as a primal grid, and Voronoi as a dual grid.

For the discretization in time a semi-implicit projection
scheme (Gresho, 1990) is selected. This approach, in con-
junction with the covolume method, guarantees absolute, to
machine round-off, mass conservation, thus allowing us to
perform, in a robust and reliable way, long-term unsteady
simulations.

The geometries considered in this study, of interest to
compact heat exchangers, are two different corrugated chan-
nels. One is a sinusoidal wavy passage, which was previously
examined experimentally by Nishimura et al. (1984, 1990), and
numerically studied in Wang and Vanka (1995). The other is
an arc-shaped channel, with identical aspect-ratios with the
previous one, which was experimentally investigated by Ni-
shimura et al. (1990). Since the channels are periodic in the
streamwise direction, it is assumed that, at some distance from
the inlet, the flow and thermal fields are periodically fully de-
veloped (Patankar, 1977). For this reason, only one period of
the flow domain is used to perform the calculations.

The results obtained, from steady to unsteady (periodic and
aperiodic) flow regimes for a fluid with a Prandtl number of
0.7, representative of air, agree well with the available exper-
imental data (Nishimura et al., 1984, 1990) and past numerical
studies (Wang and Vanka, 1995). In particular, notwith-
standing the two-dimensional approximation, the critical value

of the Reynolds number at which the bifurcation occurs is
satisfactorily predicted.

As expected, the heat transfer rate, summarized by the
space- and time-averaged Nusselt number Nu, increases sig-
nificantly in the unsteady regime. In addition, by comparison
with the reference case of parallel-plate channel, the results
also indicate that both geometries are largely inefficient, with
similar Nusselt values and higher pressure drops, in the steady
regime. Therefore, while generalization to other unexplored
geometries cannot be done, the results suggest that the two
corrugated channels represent effective means of heat transfer
augmentation in the unsteady/transitional regime, but they
should not be operated in the low-Re, steady flow conditions.

2. Governing equations

In this work, the flow is assumed to be two-dimensional and
incompressible. For simplicity, constant thermophysical
properties are assumed. Under these assumptions, the gov-
erning equations for the fluid flow and energy transport can be
written as:

V-u=0, (1)
Ou )

E-I—V-(uu):—Vp—f—vVu—kf, (2)
or

e + V- (ul) =aV>T, (3)

where u is the velocity field, 7 is the time, v is the kinematic
viscosity, 7T is the temperature and o is the thermal diffusivity.
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3. Numerical method

Since the increase of heat transfer is observed, for wavy
channels, in the unsteady flow regime, the numerical method
should be able to integrate the governing equations accurately
and efficiently in time. Methods which usually require inner
iterations within a time-step, for example implicit SIMPLE-
like methods, were discarded, since they might become time-
consuming when solving time-dependent flows. In addition, as
pointed out by Manson et al. (1996), the main advantage of
fully implicit temporal discretization schemes, i.e., uncondi-
tional stability and therefore larger time-steps, is of minor
importance for truly unsteady flows, where the time-step is
strictly limited on accuracy grounds.

A semi-implicit projection method, as described in Gresho
(1990), does not generally require inner iterations in a time-
step to satisfy the continuity equation, and therefore it seemed
a good choice for the solution of unsteady problems. We also
decided to solve the flow equations on unstructured triangular
grids, in order to have a complete flexibility in covering any
desired geometry of the channel, and also to selectively refine
the grid in regions of special interest.

Although several techniques for CV discretization of the
fluid flow problem on unstructured grids exist, from our ex-
perience not all of them proved suitable for our purpose.

It is well known that the problem of spurious pressure field,
which might occur in numerical simulations of incompressible
flows, can be effectively eliminated by using the staggered grid
approach. In this respect, there exist several possibilities of
placing the unknown pressure and velocity components to
achieve staggering. For example, in (Thomadakis and Lesc-
hziner, 1996) the velocity components are placed on the tri-
angle (or polygons in general) nodes, and the pressure in the
triangle centroid. The velocity components are then discret-
ized, in the centroid dual of the primary grid, with the standard
Finite Volume approach, and mass conservation is sought on
the primary grid to obtain the equations for velocity correc-
tions. Such a scheme works well with the SIMPLE algorithm
but, according to our experience, if it is combined with the
projection method, a single velocity correction step does not
always bring the mass error to zero. In other words, the link
between the velocities and pressure is rather weak.

Another very interesting technique of staggering the ve-
locities is described by Hwang (1995a,b). The velocity com-
ponents are placed on the triangle sides, and the pressure is
placed in the triangle centroid. This discretization technique
provides a strong link between velocities and pressure, and,
when combined with the projection method, a single velocity
correction step is able to bring the mass error down to the
order of machine round-off. However, a drawback of this
method is the situation, which sometimes occur, in which the
velocity lies parallel to the triangle side. That velocity becomes
practically invisible to the pressure corrections. This situation
was observed, for example, when calculating buoyant flows,
i.e., the natural convection side-heated cavity. A similar ap-
proach of that of Hwang, and called side-centered scheme, is
described in Ridia et al. (1997).

To the best of our knowledge, there are not many studies in
which the projection method is successfully applied on un-
structured triangular grids. Botta and Hempel (1996) have
chosen to place the velocities on the triangle centroids, and the
pressures on the triangle nodes. With this arrangement it is
easy to calculate the pressure gradient and satisfy the mass
conservation. The only caveat of the method is its relative
complexity, since it needs three different grids (two triangular
and one polygonal) to solve the governing equations in two
dimensions. The method described by Despotis and Tsangaris
(1996), uses only one grid to solve the governing equations, but

it seems that it has been applied only on regular triangular
grids, i.e., grids with equilateral sides. A general fractional-step
projection algorithm, for hybrid unstructured finite volume
grids (i.e., grids composed of triangles and quadrilaterals), has
been recently presented by Kobayashi et al. (1999). It was
proved that the method attains a second-order of accuracy, on
arbitrary unstructured hybrid meshes, for the incompressible
two-dimensional steady version of the Navier-Stokes equa-
tions.

In this work, the discretization is performed with the so-
called complementary volume (or covolume for short) method,
first introduced by Nicolaides (1989, 1992) and subsequently
applied by Hall et al. (1991), Cavendish et al. (1992, 1994) and
Hall and Porsching (1996). The main feature of the method is
the use of two sets of CVs or cells, with the property that the
edges of each set of cells are perpendicular to the faces of the
other set. In two dimensions, an illustrative example of covo-
lumes is the staggered Cartesian grid. Another example of
covolumes in two dimensions consists of Delaunay—Voronoi
grids. Other possibilities exist, like trapezoidal grids, and
combinations of Cartesian, triangular and trapezoidal grids.
Although these combinations can be useful in some circum-
stances, in this work we considered only the Delaunay—Voro-
noi pairs, because of their geometrical flexibility, conservation
properties (Perot, 2000), and relative ease of generation.

It is interesting to note, at this point, that there is wide-
spread acceptance of the idea of limited flexibility of the
covolume approach, using the Delaunay—Voronoi grid pairs
(see Ridia et al., 1997), because of the orthogonality con-
straint, in particular when considering complex shapes and
adaptive grids. Such misconception is based on the assumption
that the generation of Delaunay—Voronoi grids has to be
centroid-based. This is not true, since grid generators circum-
center-based also exist (Niceno, 1997), which produce high
quality grids and yet are flexible enough to allow for grid ad-
aptation. Furthermore, as pointed out in (Perot, 2000), the
covolume method does not necessarily require that the cell
circumcenters be located within the cell itself, or that the mesh
be a Delaunay tesselation. Highly distorted grids, i.e., grids
where a significant portion of the cell circumcenters lies outside
the respective cell, impact the accuracy, but not the conserva-
tion properties, of the method (Perot, 2000).

The primitive variables in the covolume method are the
velocity components normal to the sides of one set of cells, and
the pressure. As illustrated in Fig. 1, velocity components are
located at the intersections of the two set of grids, normal to
the sides of one set (which is then referred to as the primal
grid), and parallel to the sides of the remaining set (dual grid)
of CVs. Pressure, temperature and any additional scalar vari-
ables, are defined on the nodes of the dual grid.

This type of discretization can be considered as the gener-
alization of the well-known MAC method on triangular grids.

—— primal grid (Delaunay)
,,,,,,, dual grid (Voronoi)
o primal grid node

° dual grid node

Fig. 1. Placement of primitive variables on the Delaunay—Voronoi
grid-pair.
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Therefore, the method presented has the geometric flexi-
bility of the unstructured triangular grids, while preserving the
conservation properties of a staggered grid arrangement.

3.1. Spatial discretization

We describe first the spatial discretization of the momen-
tum and energy equations, and then the temporal discretiza-
tion, which is formally independent from the former.

3.1.1. Continuity and vorticity
The continuity equation is never solved explicitly during the
calculations. However, its discretization is used when com-
puting the pressure, and when checking for mass conservation.
Integrating (1) over the primal CV, and applying Gauss
theorem, gives

»
V~udQ’:/ u-ndl”’ =~ uin;h;, 4
[ [ 3 @

where with reference to Fig. 2(a), n denotes the unit outward
vector normal to the primal cell side, u; is the velocity com-
ponent normal to the triangle side, #; is the length of the primal
cell side, and n; represents the discretized normal on the cell
side: its possible values are +1 or —1, depending if the velocity
is oriented outward or inward of the primal control volume. N’
is the number of sides of the primal cell, and when the Dela-
unay triangulation is used as the primal grid, it has always a
value of 3.

The discretization of vorticity is used for the transforma-
tion of the viscous stress tensor in the momentum equation (2)
into a form more suitable for discretization by the covolume
method. The scalar vorticity @ = —w, is computed at each

(b)

Fig. 2. Discretization of: (a) continuity; (b) vorticity.

node of the primal grid (see Fig. 2(b)), and can be approxi-
mated, over the dual grid cell, by

N

2
wo=— [ u-tdl" = —; uit;l;, 5
Q o Q ; TN ()

where t is the unit vector tangent to I'”, traversing it in the
anticlockwise direction, /; is the length of the dual (Voronoi)
cell side, and ¢ is the discretized tangent vector on the cell side:
its possible values are +1 or —1, depending if the velocity is
traversing the node in the anticlockwise or clockwise sense. N”
is the number of dual cell sides, and in our case, where the
Voronoi polygons are used as dual cells, it may vary from node
to node.

3.1.2. Momentum equation

The momentum equation is approximated at each inter-
section of the primal and dual grid, which is, for the case of
Delaunay—Voronoi grid, the midpoint P of each triangle side
(see Fig. 3(a)). Since the primitive variables are the velocity
components normal to the triangle side, we have to express the
momentum equation as a function of the normal components
of velocities of adjacent triangle sides. For that purpose, the
following definition from the vector analysis is employed

Viu=V(V-u)—Vx(Vxu=-Vxao. (6)
Substituting Eq. (6) into Eq. (2), the following form of the
Navier—Stokes equation is obtained

0
afl;JrV-(uu):prvawarf. )
In order to obtain the equation for the normal velocity com-

ponent, the Navier—Stokes equation has to be projected in the

\

(b)

Fig. 3. Discretization stencils: (a) momentum equation; (b) energy
equation.
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normal direction. Multiplying Eq. (7) by np, the unit vector
normal to the triangle side 4B, we obtain a scalar version of
the momentum equation (Cavendish et al., 1994)

Ou 90 ow
a—:+V(np‘u)~u:—£+vE+f-np, (8)
This is the form of the Navier—Stokes equation which is most
suitable for subsequent discretization with the covolume
method.

The convective fluxes are obtained by an area-weighted
interpolation, as described in Hall et al. (1991), of the con-
vective terms evaluated for adjacent triangles. With reference
to Fig. 3(a)

/

V(np~u)~u|psz(np-u)~u\c
C D
Q)
+———=V(p-u)-up, 9
Gy Vo w)-uly ©)

where Q. and Q) are areas of triangles C and D adjacent to
triangle side 4B.

The corresponding convective term for each of the triangles
is calculated in the following way

1
V(np-u)-u |y :a/(n,wu)(mu)dl"’
r
1 &
~ g > (e wunih;, (10)

i=1

where i implies summation over triangle sides, N’ is the number
of triangle sides (which is always three) and u; are the velocity
vectors on triangle sides.

The pressure term is approximated as

al ~Pc—Pp 7 (11)
anp )
where pc and pp are the pressures in the triangles adjacent to
the side P (see Fig. 3(a)).

The viscous term is obtained by introducing the discretized
vorticity, given by (5), into the viscous part of (8)

1 NH l N”

B A
0o o — o, _2f 2 uitily — gr 222 witil;
9w - :

otp h h (12)

3.1.3. Reconstruction of the velocity field

It is obvious from Egs. (9)-(12), that the normal component
of the velocity at P is a function of the normal velocity com-
ponents of the sides which contain node 4 or B. However, the
tangential components are also needed for the evaluation of
the convective fluxes in Eq. (10). These unknown tangential
components of the velocity can be reconstructed from the
known normal components. In practice, however, we treat the
convective fluxes explicitly and therefore, when evaluating
(10), the tangential components for that purpose are known.

The method we used for the reconstruction of the velocity
field follows directly from Nicolaides (1989) and Hall et al.
(1991). With reference to Fig. 4, the tangential velocity com-
ponent can be obtained from the (reconstructed) velocity val-
ues at points C and D, from the following expression

1
vpzz(uc—o—uD) “tp. (13)

The velocities uc and up are obtained by assuming that they
are constant in each triangle. Following that assumption, the
following relations hold:

up =up -ny, (14)

Fig. 4. Evaluation of the tangential component vp.

Uy = Up - My, (15)
u3 = Uc - g, (16)
Ug = Uc - Ny, (]7)

where u;, up, u3 and uy are the velocity components normal to
the triangle sides which enclose node P (see Fig. 4). When Egs.
(14)—(17) are solved for uc and up the solution of the following
form is obtained:

u4t3 — 143t4
Uy =——" 18
C t3 n, ) ( )
uztl — u|t2
_ ‘ 19
o t-m ( )

The extension of the covolume method to three-dimensional
problems has already been proposed in Cavendish et al. (1994),
where the Delaunay tetrahedrons and Voronoi polyhedra are
used as the primal and dual mesh, respectively. Vorticity,
which is the basis for the discretization of viscous terms, is
defined on each face of the Voronoi polyhedron, around the
tetrahedron edge.

The difficulties associated with the generation of a pair of
Delaunay—Voronoi tesselations in three dimensions, are
somehow mitigated by the fact that the covolume method can
still be applied, though at reduced accuracy, in degenerate
cases, as shown in Cavendish et al. (1994). These situations
correspond to Voronoi polyhedra which have faces of zero
area or edges of zero length, or collapsed tetrahedra with ar-
bitrary small, and in extreme cases even zero, volume, but well-
proportioned triangular faces, which are termed slivers.

3.1.4. Energy equation

The temperature unknowns are associated with the triangle
circumcenters. The discretization of the energy equation fol-
lows the standard approach of the CV method, i.e., integrate
the governing equation over the CV, and apply Gauss theorem
to replace area integrals (volume integrals in three dimensions)
with boundary line integrals (surface integrals in three di-
mensions). This procedure is equivalent to integrating heat
fluxes over the faces of the CV. The calculation of the heat
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fluxes on the Delaunay—Voronoi pair is very simple, because of
the orthogonality of the grids.

Therefore, the integration of Eq. (3), on the primal (Dela-
unay) grid, takes the form

or "
—dQ’+/(uT)~ndF’:oc VT -ndI". (20)
Jo 01 ' Jr

The convective term is calculated by

-
[/(uT) ndl" ~ Zu,-f}hi, (21)
pan

where i implies summation over triangle sides, 7; are temper-
atures at triangle sides, and can be obtained in a variety of
ways. In this work, an area-weighted interpolation was used,
resulting (see Fig. 3(b))

Q Q
i = L T; 7 T7
aro T ara

where Q' is the area of the shaded triangle in Fig. 3(b) and ©Q;
represents the area of the neighboring triangle.

This interpolation, as well as that given in (9), corresponds
to central differencing used in conventional finite difference
discretization. It is evident from Eq. (21) that for the calcula-
tion of the convective heat fluxes, only the velocity compo-
nents normal to the triangle sides are needed.

The diffusive term is given by (see Fig. 3(b))

(22)

v
I
o[ VT -ndl" =« T.—T)-". 23
. ,-E:]( )l; (23)

3.2. Discretization in time

3.2.1. Fluid flow equations

For the discretization in time, a semi-implicit, second-order
projection method, described in Gresho (1990), is used. This
method was chosen because it is characterised by computa-
tional efficiency in the temporal integration, which is very
important for the present work, where the main interest is to
accurately portrait unsteady flow dynamics and heat transfer.

In the projection method, the first stage of the integration
consists of solving the momentum equation for an intermedi-
ate velocity field given by

! — 3 1 v

— n “H" — _Hn—l Ix72(gntl n 24
v Vp+2 w5y Hy +2V(u +u"), (24)
where 0""! is the tentative velocity field and H, = —V - (uu). In

(24), the convective term is discretized by a second-order, ex-
plicit Adams Bashfort method, while the diffusive term is dis-
cretized with the Crank—Nicolson scheme. This tentative
velocity field, i'*!, is in general not satisfying the continuity
equation. This step is followed by the solution of a Poisson’s
equation for the scalar potential (pseudo-pressure) ¢

Vip = Vit (25)

The left-hand side of (25) is discretized in the same way as the
diffusive term of the energy equation (23), with o = 1, and the
discretization of the right-hand side of (25) is given by (4).

Finally the normal velocity components at the new time-
step can be calculated from

un+l — ﬁ)H»l _ VQD (26)

These velocity components satisfy the divergence-free condi-
tion, and therefore the tangential velocity components can be
safely reconstructed to complete the calculation of the flow
field.

The pressure is updated with

3o
n+l __ _n -
pr=p +2Ar' (27)

3.2.2. Energy equation
For the energy equation, as for the momentum equation,

the non-linear term is discretized with the second-order explicit

Adams—Bashfort scheme, and the diffusive term is discretized

with the Crank—Nicolson scheme

-7 3 1

- o n n
At :EHT_EHZ,’" 1+§V2(T Jrl—i_T)7 (28)

where Hr = —V - (uT).
3.3. Solution of linear systems

The linear systems resulting from the present discretization
are all banded and sparse. However, there is a fundamental
difference between the systems resulting from the discretization
of velocity and temperature equations on the one side, and the
system resulting from the discretization of the scalar potential ¢.

The linear systems resulting from the discretization of the
Helmholtz-type momentum and energy equations, are very well
conditioned (diagonally dominant), and suitable for solving
with iterative solvers (CG, CR, BiCG, GMRES, etc.). In this
work the BiCG (BiConjugate Gradient) method was used, be-
cause the system resulting from discretization of the momen-
tum equation is non-symmetric. The number of iterations per
time-step was usually below 10 for the solution in the unsteady
regime, and almost insensitive to the number of unknowns.

On the other side, the discretization of the pressure cor-
rection equation (25), with Neumann and periodic boundary
conditions, results in a very poorly conditioned linear system.
As a consequence, when iterative methods were used, it re-
sulted in a large number of iterations per time-step, as also
experienced by Huser and Biringen (1992). For this reason,
this system was solved with a direct solver based on LU de-
composition.

The computer program used in this study was written in
standard C, and compiled with the GNU C compiler on a
Linux system. All the computations were performed on a PC
with Intel Pentium II Celeron processor at 400 MHz.

On the finest grid reported here (12,500 triangles) the speed
of the code was 41.5 pus per cell and time-step. The most time
consuming part of the code, as expected, is the direct solution
of the pseudo-pressure equation, which takes about 85% of the
computational time.

4. Geometrical configuration and computational details

The two geometries shown in Fig. 5 were examined, as
representative of typical corrugated channels adopted for heat
transfer augmentation.

The sine-shaped wavy channel was previously examined
numerically by Wang and Vanka (1995), and experimentally
by Nishimura et al. (1984, 1990). The fluid flow and mass
transfer in the arc-shaped wavy channel was experimentally
studied by Nishimura et al. (1990).

We studied the flow and temperature fields under the as-
sumption of fully developed flow, which means that the flow
pattern repeats itself from module to module, and the heat
transfer coefficient has reached its asymptotic value. In such
circumstances it is sufficient to analyze only one segment
(module) of the geometry (Patankar, 1977).

We did not analyze in detail, for the unsteady regime, the
effects of including, in the computational domain, more than
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Fig. 5. Geometrical configuration of the corrugated channels.

one repeating module. However, several other studies (Wang
and Vanka, 1995; Wang et al., 1996; Amon and Mikic, 1990),
have demonstrated the adequacy of using only one of the
modules as the computational domain. For example, in Wang
and Vanka (1995), it was proved that, for the sinusoidal wavy
channel considered also here, increasing the length of the
computational domain up to three repeating modules had no
effect in the instantaneous flow patterns, which were the same
in each module. In Wang et al. (1996), a comparison of the
time-traces of streamwise velocity component and tempera-
ture, obtained for a computational domain of length L and
length 3L, respectively, did not reveal any difference.

The pressure field in the fully developed region can be ex-
pressed (Patankar, 1977) as the linear combination of the local
pressure, and the overall pressure drop

P(x,y,t) = p(x,y, 1) + B, (29)

where the local component p(x, y, 7) repeats itself from module
to module. The overall pressure gradient /3 is introduced in the
momentum equation (2) as the source term f in the streamwise
direction

f=p-i (30)

where f is the prescribed pressure drop, and i is the unit vector
in the x (streamwise) direction.

A no-slip boundary condition for velocity is enforced on
the walls of the channels, and a periodic boundary condition is
applied at the inflow and outflow of the computational domain
(see Fig. 5)

ux,7) =0, xex, =0, (31)

u(Xin, T) = U(Xou, 7) 7= 0. (32)

For the temperature field, there are two fundamental types of
boundary conditions which can be prescribed on the walls:
constant heat flux, or constant temperature. In the present
work, the latter was used throughout.

For the solution of the temperature field, a non-dimen-
sional temperature is introduced
0(x, 1) = M’ (33)

Ti b (X7 T) - T w

where T, is the wall temperature, and 7, is the bulk tempera-
ture, defined by

J,uT(x,7) - ndy

Tb(x7r): f U'ndy
H

(34)

The result of this normalization is the periodicity condition for
the non-dimensional temperature field

0(0,y,7) = 0(L,y,7) = 0Q2L,y,7) = ..., (35)

where L is the length of the periodic (repeating) module.

The solution of the temperature field, with this normaliza-
tion, presents some difficulties. One is due to the fact that the
bulk temperature distribution 7;(x, 7) is not known a priori. In
particular, it can be shown (Murthy and Mathur, 1997) that,
for the constant temperature boundary condition, the solution
of the energy equation in its non-dimensional form represents
a non-linear problem. Several authors like Wang and Vanka
(1995), Wang et al. (1996) and Murthy and Mathur (1997)
circumvented this difficulty by linking the non-dimensional
temperature field with the bulk temperature in an iterative
fashion. However, our desire was to avoid, whenever possible,
inner iterations in a time-step, or otherwise the overall com-
puting time could become too large for an unstructured grid
approach.

A second difficulty is the evaluation of (34) on the un-
structured triangular grid.

Our approximate strategy was to use the normalization
procedure (35) to scale the temperature profile, from the outlet
of the module, and copy it to the inlet, as the profile for the
new iteration of the linear solver for the energy equation. This
can be expressed, indicating with the superscript m the itera-
tion counter, by

m _ Tb(07 T) — TW m—1 _
r00) = (i ) Ly ~ T + T

(36)

which is the consequence of (35) and the definition of bulk
temperature (34). Since the time-steps, and consequently the
temperature variations, were relatively small, this did not affect
the overall efficiency of the solver. One variable remains to be
set, and that is the bulk temperature at the inflow 7;(0, 7). In
our calculations we have set it to a constant, arbitrary value,
different from T,,. The choice of the value for the bulk tem-
perature is irrelevant for the later calculation of Nu, since it is
obtained from the non-dimensional temperatures.
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At the outflow, a standard Neumann boundary condition
was used

OT(L,y,7)
oi

In all the calculations, the wall temperature T;, is set to 0.

Although the grid is unstructured and the calculation of the
bulk temperature is cumbersome inside the domain, this is not
the case for the outflow boundaries, since the triangle sides on
these boundaries are normal to the x-axis. Therefore it is
straightforward to calculate the bulk temperature at the out-
flow which appears in Eq. (36).

The heat transfer rate is summarized by the Nusselt num-
ber, which is defined as

_ hDy
Tk

where Dy is the hydraulic diameter, defined as twice the av-
erage channel height H,,. The space- and time-averaged heat
transfer coefficient 4, is given simply as a Riemann sum, where
N, is the number of time-steps used to collect time-averaged
quantities

=0. (37)

Nu (38)

_ 1 T+At Q 1 Q
h=A / oM™ TN ; oMy Y

with Q being the instantaneous, total heat flux in the module

0= (1(0,7) - To(L.7)) / u-ndy (40)

H

and LMTD the log-mean temperature difference in the module
(Ty — Ty(L,7)) — (Ty — To(0, 7))
ln((Tw - Tb(L7 T))/(Tw - Tb(07 T))) ’

Recognizing the approximate treatment of the boundary
conditions for the energy equation, we have checked for the
standard case of fully developed flow and heat transfer in a
parallel-plate channel, in which case the Nusselt number, Eq.
(38), is equal to 7.54 (Shah and London, 1978). For Re = 180,
a value of the same order of Re considered for the corrugated
channels, the values of Nu obtained on three grids ranging
from coarse (650 nodes), medium (2564 nodes) to fine (3478
nodes), were 7.74, 7.56 and 7.55, respectively. These results
indicate that, for steady regimes, our approach gives satisfac-
tory results. For unsteady regimes, we will show that, for the
sine-shaped channel, the predicted values of the heat transfer
rate agree well with those of Wang and Vanka (1995). These
results indicate an acceptable level of accuracy of our ap-
proach also for time-dependent regimes.

The time-averaged friction factor was computed according
to its standard definition:

o ﬂHav
f=5—"
2pug,

LMTD = (41)

(42)

where u,, is the time-averaged mean velocity in the channel.
The Reynolds number is defined in the usual way

_ u“lVHaV

Re (43)

v

5. Results and discussion

The two different wavy channels of Fig. 5 were studied, for
a Prandtl number of 0.7, representative of air, for a range of
Reynolds numbers which give rise to either steady or time-
dependent, but not turbulent, regime.

Fig. 6. Grid for the arc-shaped channel.

Table 1

Results of grid independence tests for the overall heat transfer
Sine-shaped channel Nu = hDy [k

Re =25 Re =~ 175

Grid 1 - 5664 cells 7.888 9.156
Grid 2 — 7588 cells 7.895 9.164
Grid 3 - 10,136 cells 7.897 9.167
Arc-shaped channel Re ~ 19 Re ~ 61
Grid 1 - 6968 cells 7.082 7.218
Grid 2 — 9344 cells 7.091 7.228
Grid 3 — 12,500 cells 7.096 7.233

Symmetric grids were used for the computations, to ensure
that if any asymmetry in the flow field occurs, it could not be
attributed to the grid, but to the natural transition to unsteady
flow. The grids adopted are characterised by 5664 and 6968
cells for the sine-shaped channel and the arc-shaped channel,
respectively. The grid for the arc-shaped channel is depicted in
Fig. 6. All the results shown in this section were obtained with
these grids.

A grid refinement study was performed, for both channels
and two values of the Reynolds number, in order to assess the
accuracy of the results presented. A summary of the grid re-
finement study is given in Table 1. From the results, it can be
seen that the values of Nu obtained on different grids differ by
less than 0.25%, thus demonstrating the adequacy of the grids
adopted, and the numerical accuracy of the method.

The initial conditions were either those corresponding to a
quiescent isothermal fluid, or the flow and temperature fields
obtained from a lower value of Re. In order to trigger the
possible bifurcation to the unsteady regime, and thus reduce
the length of the initial transient, the flow was perturbed by
adding, for a certain number of time-steps, a randomly dis-
tributed force field.

5.1. Steady regime

Although in the steady regime the flow is symmetrical
about the horizontal centerline, requiring the solution for only
one of the halves, the complete domain, between the two walls,
was solved in order to locate the approximate value of Re at
which the transition from the steady regime to unsteady con-
ditions occurs.
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The discretized equations were integrated for a sufficiently
long time until time invariant flow and temperature fields were
obtained. This convergence was monitored in two ways: by
visual inspection of selected time-traces, and by checking the
number of iterations needed by the BiCG solver, which drops
to zero when the velocity and temperature field are the same in
the new and old time step. By that time, the value of Nu had
also became time-invariant.

The progression in Re was obtained by increasing the
pressure drop in the source term of the momentum equation.
Since the pressure drop is the independent variable, the cal-
culated Reynolds number did not turn out to be an integer
value. Other approaches could also be adopted, like to adjust
the kinematic viscosity (Wang and Vanka, 1995), or to pre-
scribe the Reynolds number first, and then adjust the pressure
drop in order to obtain the desired mass flow and Reynolds
number.

5.1.1. Sine-shaped channel

For this geometry, the flow is first seen to separate at
Re =24.9. With further increase in Re the recirculation
bubble increases in size, and shifts downstream, with the last
steady state observed at Re = 175. This result agrees with the
numerical results of Wang and Vanka (1995), which pre-
dicted steady state at Re = 167, and unsteady periodic be-
havior at Re =200, and the experimental observations of
Nishimura et al. (1984, 1990), which qualitatively observed
that the flow becomes unsteady when increasing Re from 100
to 300.

For the heat transfer rate we observed that, in agreement
with Wang and Vanka (1995), the Nusselt number does not
increase significantly in the steady regime. In particular,
Nu = 7.8 at Re = 13.6, and slightly increases with Re, reaching
Nu = 9.3 at Re = 175. Therefore, at all Re values investigated,
the Nusselt number, for this geometrical configuration, is
higher than the corresponding value, Nu = 7.54, for the par-
allel-plate channel. This means that, even for steady, low-Re
conditions, the sinusoidal channel provides a modest increase
of heat transfer rate. However, as it will be summarized later,
the pressure drop and consequently the friction factor, is
consistently higher than that experienced in the parallel-plate
channel.

Fig. 7 shows, for the sine-shaped channel, the calculated
streamlines and temperature contours at a Reynolds number
of 175.

5.1.2. Arc-shaped channel

For this geometry, the flow already separates at Re = 19.2,
where the recirculation zones are formed behind the sharp
edges of the arc-shaped channel. By increasing the Reynolds
number, the recirculation zones increase in size and shift
downward, as it was also observed for the sine-shaped
channel.

An unsteady regime was found, for the arc-shaped channel,
at Re = 84, with the last steady state, obtained at Re = 61, il-
lustrated in Fig. 8. Therefore, the transition to unsteady flow
for the arc-shaped channel occurs at a lower Reynolds number
than for the sinusoidal channel. This is the consequence of the
fact that the edges of the arc-shaped channel are much sharper
than the edges of the sine-shaped channel, and thus contribute
to the formation, at lower Re values, of an unstable jet-pattern,
which easily becomes unsteady.

Notwithstanding three-dimensional effects, which could not
be detected with our two-dimensional calculations, these
findings qualitatively agree with the experimental visualiza-
tions of Nishimura et al. (1990), which observed that, for the
arc-shaped passage, the flow becomes unsteady at Re above

080 ————

040 —————————

—0.40

0.48

(b)

Fig. 7. Streamlines (a) and temperature contours (b) for the sinusoidal
channel at Re = 175.

100, and that the onset of unsteadiness occurs at lower Re
values than in the case of sinusoidal walls.

At Re = 19.2 the Nusselt number is equal to Nu = 7.1, than
with the increase of Re it decreases slightly, and reaches the
minimum value of Nu = 7.0 at Re = 32. With further increase
in Re, Nu increases and reaches the value of Nu=7.3 at
Re = 61. For this configuration, at all Reynolds numbers the
value of Nu is consistently lower than the values obtained for
the sinusoidal channel. It is also lower than the value of Nu for
the fully developed flow in a parallel-plate channel. This means
that the arc-shaped channel does not provide any increase in
heat transfer when operating in the steady flow regime, and yet
there is the penalty of an increase in pressure drop.

The low heat transfer performances of the arc-shaped
channel at steady, low Re values, are, at least qualitatively,
corroborated by the observations reported in Nishimura et al.
(1990), where, by considering the analogy between heat and
mass transfer, they found that the arc-shaped channel, up to
Re less than 55, is characterised by a lower mass transfer rate
than sinusoidal walls.

5.2. Unsteady regime

In the unsteady regime, once the flow and temperature
fields reached statistical steady-state conditions, the calcula-
tions were continued for a sufficiently long time, until invariant
values of time-averaged Nu and f were obtained.
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(b)

Fig. 8. Streamlines (a) and temperature contours (b) for the arc-
shaped channel at Re = 61.

5.2.1. Sine-shaped channel

As already stated, we have found that the bifurcation to an
unsteady regime occurs at Re > 175. At Re =203 the flow
exhibits a periodic character. The time history of the velocity
at one point in the domain, not reported here, approaches a
limit cycle. As the Reynolds number is increased, a new
characteristic frequency occurs, and the flow exhibits a quasi-
periodic behavior. Further increase of Re leads to a chaotic
behavior. A snapshot of the temperature field in the unsteady
flow regime is shown, for illustrative purposes, in Fig. 9 for
Re = 412. Tt is clearly visible from the figure that several vor-
tices coexist, which mix the cold fluid near the boundaries with
the hot fluid from the core. This, in turn, increases the tem-
perature gradients near the walls, producing, as a net effect, an
increase in the heat transfer rate.

At Re = 412, which is the highest Reynolds number that we
have calculated, the Nusselt number is Nu = 20.2, which is
more than twice the maximum value of Nu under steady
conditions.

5.2.2. Arc-shaped channel

As already observed, the unsteady regime for the arc-
shaped channel is reached at significantly lower Reynolds
number than for the sinusoidal channel.

For this geometry of the flow passage, in the unsteady re-
gime, the increase of the Nusselt number is somehow higher
than that observed for the sinusoidal channel. For example,
for the arc-shaped channel at Re = 103, the Nusselt number is

Fig. 9. Instantaneous temperature field for the sinusoidal channel in
the unsteady regime at Re = 412.

Fig. 10. Instantaneous temperature field for the arc-shaped channel in
the unsteady regime at Re = 226.

Nu = 13.6, a value obtained, for the sine-shaped channel, at a
higher Reynolds number, approximately Re = 263. It means
that the arc-shaped channel provides higher increase of the
heat transfer rate in the unsteady flow regime than the sinu-
soidal channel, though with the penalty of higher friction
factors.

The instantaneous pattern of the temperature field is illus-
trated, for Re = 226, in Fig. 10, where the oscillating vortices
are clearly recognizable, together with the higher temperature
gradients at the walls.

5.3. Summary of performance data

The results obtained for both geometries are summarized in
Fig. 11, which encompasses both steady and unsteady regimes,
where the Nusselt number Nu and the friction factor f, are
given as a function of the Reynolds number. For comparison
purposes, also the Nu values obtained numerically by Wang
and Vanka (1995) are plotted in Fig. 11(a), and they agree well
with our results.

From the figure it is evident that, in comparison with the
straight channel, the heat transfer increase, at low-Re steady
conditions, is very low for the sinusoidal channel, and is even
slightly negative for the arc-shaped channel. The increase in
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Fig. 11. Performance characteristics of the sinusoidal channel and arc-
shaped channel as a function of the Reynolds number: (a) Nusselt
number; (b) friction factor.

Nu, higher for the arc-shaped channel, becomes evident only in
the unsteady regime.

The friction factor, for both geometries, is always higher,
more than two times, than that of the parallel-plate channel in
the steady, laminar regime. A significant increase of the fric-
tion factor, beyond the transition point, is visible in the curve
where a rapid increase is observed. Some experimental data for
the sine-shaped channel, taken from Nishimura et al. (1984),
are also plotted in Fig. 11(b), and the trend, i.e., the change in
slope, is correctly reproduced by our calculations, though the
values of the friction factor are somehow overestimated. The
friction factor of the arc-shaped channel is greater than that of
the sinusoidal channel, also in the steady regime, whereas a
reverse trend in Nu was predicted.

6. Conclusions

Fluid flow and heat transfer in periodic, corrugated chan-
nels, have been numerically investigated through a time-ac-
curate, unstructured covolume method, for a fluid with
Pr = 0.7, representative of air.

The geometrical configurations considered are a sinusoidal
channel, which has been studied experimentally by Nishimura

et al. (1984, 1990) and numerically by Wang and Vanka (1995),
and an arc-shaped channel, also experimentally tested by Ni-
shimura et al. (1990).

The results indicate that in the low Reynolds, steady re-
gime, both geometries are ineffective, since they give heat
transfer rates that are either slightly higher, for the sine
channel, or even lower, for the arc-shaped channel, than that
provided by the parallel-plate channel. However, beyond the
critical value of the Reynolds number at which transition to an
unsteady regime is observed, the heat transfer rate increases
significantly, as a result of self-sustained oscillations.

The values of the friction factor, for both channels, are
consistently higher than that of the parallel-plate channel, thus
further indicating that corrugated channels are effective in
enhancing the heat transfer rate only in unsteady regimes.

Acknowledgements

Financial support for this research was provided by the
Ministero dell’ Universita e della Ricerca Scientifica e Tecno-
logica — Progetto Nazionale 1997: Termofluidodinamica Mono
e Bifase — and is gratefully acknowledged. A fellowship from
the Consortium for International Development of the University
of Trieste supported one of the authors (B. Niceno) while on
leave at University of Trieste, Italy, from the University of
Rijeka, Croatia.

References

Amon, C.H., Mikic, B.B., 1990. Prediction of convective heat transfer
in self-sustained oscillatory flows. J. Thermophys. 4, 239-246.
Botta, N., Hempel, D., 1996. A finite volume projection method for the
numerical solution of the incompressible Navier-Stokes equations
on triangular grids. In: Benkhaldoun, F., Vilsmeier, R. (Eds.),
Proceedings of the First International Symposium on Finite
Volumes for Complex Applications — Problems and Perspectives.

Rouen, France, pp. 467-476.

Cavendish, J.C., Hall, C.A., Porsching, T.A., 1992. Solution of
incompressible Navier—Stokes equations on unstructured grids
using dual tessellations. Int. J. Numer. Meth. Heat Fluid Flow 2,
483-502.

Cavendish, J.C., Hall, C.A., Porsching, T.A., 1994. A complementary
volume approach for modeling three-dimensional Navier—Stokes
equations using dual Delaunay/Voronoi tessellations. Int.
J. Numer. Meth. Heat Fluid Flow 4, 329-345.

Despotis, G.K., Tsangaris, S., 1996. Fractional step method for
solution of incompressible Navier—Stokes equations on unstruc-
tured triangular grids. Int. J. Numer. Meth. Fluids 20, 1273-1288.

Gresho, P.M., 1990. On the theory of semi-implicit projection method
for viscous incompressible flow and its implementation via a finite
element method that also introduces a nearly consistent mass
matrix. Part 1: Theory. Int. J. Numer. Meth. Fluids 11, 587-620.

Hall, C.A., Cavendish, J.C., Frey, W.H., 1991. The dual variable
method for solving fluid flow difference equations on Delaunay
triangulations. Comput. Fluids 2, 145-164.

Hall, C.A., Porsching, T.A., 1996. A characteristic-like method for
thermally expandable flow on unstructured triangular grids. Int.
J. Numer. Meth. Fluids 22, 731-754.

Huser, A., Biringen, S., 1992. Calculation of two-dimensional shear-
driven cavity flows at high Reynolds numbers. Int. J. Numer.
Meth. Fluids 14, 1087-1109.

Hwang, Y.H., 1995a. Calculations of incompressible flow on a
staggered triangular grid. Part I: Mathematical formulation.
Numer. Heat Transfer, Part B 27, 323-336.



B. Niceno, E. Nobile | Int. J. Heat and Fluid Flow 22 (2001) 156-167 167

Hwang, Y.H., 1995b. Calculations of incompressible flow on a
staggered triangular grid. Part II: Applications. Numer. Heat
Transfer, Part B 27, 337-353.

Kakag, S., Shah, R.K., Aung, W. (Eds.), 1980. Handbook of Single
Phase Convective Heat Transfer. Wiley, New York, pp. 17.1-17.62.

Kobayashi, M.H., Pereira, J.M.C., Pereira, J.C.F., 1999. A conserva-
tive finite-volume second-order accurate projection method on
hybrid unstructured grids. J. Comp. Phys. 150, 40-75.

Manson, J.R., Pender, G., Wallis, S.G., 1996. Limitations of
traditional finite volume discretizations for unsteady computation-
al fluid dynamics. AIAA J 34 (5), 1074-1076.

Murthy, J.Y., Mathur, S., 1997. Periodic flow and heat transfer using
unstructured grids. Int. J. Numer. Meth. Fluids 25, 659-677.

Niceno, B., 1997. EasyMesh v. 1.4 — Internet homepage: http://www-
dinma.univ.trieste.it/nirftc/research/easymesh/.

Nicolaides, R.A., 1989. Flow discretization by complementary volume
techniques. AIAA paper 89-1978, In: Proceedings of the Ninth
AIAA CFD Meeting. Buffalo, New York.

Nicolaides, R.A., 1992. Direct discretization of planar Div—Curl
problems. SIAM J. Numer. Anal. 29, 32-56.

Nishimura, T., Ohori, Y., Kawamura, Y., 1984. Flow characteristics in
a channel with symmetric wavy-wall for steady flow. J. Chem. Eng.
Jpn. 17, 466-471.

Nishimura, T., Murakami, S., Arakawa, S., Kawamura, Y., 1990.
Flow observations and mass transfer characteristics in symmetrical
wavy-walled channels at moderate Reynolds numbers for steady
flow. Int. J. Heat Mass Transfer 33, 835-845.

Patankar, S.V., 1977. Fully developed flow and heat transfer in ducts
having streamwise-periodic variations of cross-sectional area.
ASME J. Heat Transfer 99, 180-186.

Perot, B., 2000. Conservation properties of unstructured staggered
mesh schemes. J. Comp. Phys. 159, 58-89.

Rida, S., McKenty, F., Meng, F.L., Reggio, M., 1997. A staggered
control volume scheme for unstructured triangular grids. Int.
J. Numer. Meth. Fluids 25, 697-717.

Shah, R.K., London, A.L., 1978. Laminar Forced Convection in
Ducts. Academic Press, New York.

Thomadakis, M., Leschziner, M., 1996. A pressure correction method
for the solution of incompressible viscous flows on unstructured
grids. Int. J. Numer. Meth. Fluids 22, 581-601.

Wang, G., Stone, K., Vanka, S.P., 1996. Unsteady heat transfer in
baffled channels. ASME J Heat Transfer 118, 585-591.

Wang, G., Vanka, S.P., 1995. Convective heat transfer in wavy
passages. Int. J. Heat Mass Transfer 38, 3219-3230.



